初中數學教學案例及分析范文

時間:2023-10-12 17:17:46

導語:如何才能寫好一篇初中數學教學案例及分析,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

初中數學教學案例及分析

篇1

關鍵詞:幾何畫板 初中數學教學 案例分析

教育事業(yè)在我國由來已久,其經過多年發(fā)展如今已經擁有了多種教學方式,且新型教育機構也在不斷涌現,使得我國整體教育水平有了很大提升。在此過程中,我國教育理念也發(fā)生了很大變化,當代社會更加提倡實施素質教育、創(chuàng)新教育以及通識教育等,然而傳統(tǒng)數學教學方式已經難以滿足當代教育要求和發(fā)展趨勢,而幾何畫板恰恰可以彌補此方面缺憾,我國在將幾何畫板應用于初中數學教學后雖然小有成就,但依然有很大的上升空間。

一、幾何畫板應用于初中數學教學的優(yōu)勢

幾何畫板的應用最早由美國興起,我國在意識到其對數學教學方面的作用后,即將其引入到初中教學中,其獨有的優(yōu)勢使得傳統(tǒng)初中數學教學中的弊端得以優(yōu)化,具體可以歸納為以下幾個方面:1.將抽象具體化,其形象生動的表現形式,可以將抽象的數學公式展現在學生眼前,如此一來學生即可以提升課堂學習效率,該優(yōu)勢在幾何知識方面的作用尤為顯著,使得難教難懂的幾何知識變得易于理解;2.極具動態(tài)感覺,該教學環(huán)境的靈活性十足,其可以根據點、線、面不同的特征組成形式各樣的幾何圖形,將數學規(guī)律進行動態(tài)演示,同時學生也可以根據自身需求拖動、改變幾何圖形,此種學習方式更加利于開展自主學習,另外,動手操作相較于教師講解更能促進學生思維能力的提升。

二、幾何畫板優(yōu)化初中數學教學的案例分析

(一)函數及圖像

函數是初中數學中較為重要的知識,并且對于從未接觸過函數的學生而言,若單單依靠教師講解,很難使學生理解其實際含義,而使用幾何畫板則不會存在此問題。如在區(qū)分y=x+4與y=-x+4時,教師即可以引導學生利用幾何畫板來幫助自身理解,其所顯示的圖形中可以看出,y=x+4中,x的值越大,y值越大,可見其為單調遞增函數;而y=-x+4中,x的值越大,y值越小,因此此種函數為單調遞減函數。學生可以輕易的發(fā)現函數單調性的特性,并迅速找到區(qū)別其遞增、遞減的最佳標志,即觀察系數,當x前的系數為負,其為單調遞減,為正時則為單調遞增,另外,當y=-x+4與y=x+4相交時,會出現垂直現象,以上種種知識在幾何畫板中的顯示十分明顯,便于學生理解。

(二)勾股定理

勾股定理知識雖然不似函數般難懂,但學生自身理解能力不同,對于數學知識的興趣程度也有所差異,因此教師很難使學生保持在同一水平,但使用幾何畫板可以避免或減少此種情況發(fā)生,學生在自行操作幾何畫板的過程中,能夠感受到知識的變化,也能感受到自身對知識的理解能力有了很大提升,因此可以增加學生的信心。如在n堂中,教師可以引導學生繪圖驗證勾股定理,首先繪制三角形,其次將兩個直邊標為a,b,斜邊標為c,然后分別以三個邊為基點繪制正方形,Oa,Ob,Oc,最后通過計算即能夠發(fā)現勾股定理的含義,即Oa面積+Ob面積=Oc的面積。

(三)數學公式

數學公式在數學學科中極為重要,甚至可以說其是學好初中數學的前提,然而由于數學公式往往需要學生死記硬背,很多學生覺得十分枯燥,并且人的記憶時間有限,此種記憶難以維持很長時間,當學習更多知識時會慢慢將其淡忘,對于今后數學公式的運用,已經今后的數學學習而言極為不利。而幾何畫板的優(yōu)勢使得教師可以將公式內容形象的演示出來,學生可以直觀發(fā)現公式的規(guī)律,同時掌握更多科學依據,此種由理解促進記憶的方式更有意義。如在學習概率知識時,其中包含了許多形式的公式,如排列公式、組合公式或是加法、乘法概率等,此種知識若學生只專注于記憶,卻忽略了理解,則很難在實際應用中迅速解答相關習題,幾何畫板內容的多樣性在此方面的作用可以有更好的體現。

三、結語

綜上所述,研究關于幾何畫板優(yōu)化初中數學教學的案例分析方面的內容,具有十分重要的意義,其不僅關系到我國初中學子的數學成績,也與我國教育事業(yè)發(fā)展息息相關。不難發(fā)現,使用幾何畫板可以豐富課堂教學方式,也能充分引起學生學習數學的興趣,便于學生理解更深一層的數學知識,此種新型教學環(huán)境所產生的作用是前所未有的,但不可否認的是,其在實際應用中依然會暴露出些許問題,因此相關機構和人員應加強對此方面的研究,使其能夠更加完善。

參考文獻:

[1]李健美.幾何畫板優(yōu)化初中數學教學之我見[J].讀與寫(教育教學刊),2015,(09).

[2]于桂玲.幾何畫板優(yōu)化初中數學教學的案例分析[J].中國校外教育,2015,(01).

篇2

著名數學家和數學教育家G•波利亞曾經精辟地指出:“數學有兩個側面,一方面是歐幾里得式的嚴謹科學,從這個方面看,數學像是一門系統(tǒng)的演繹科學;但另一方面,創(chuàng)造過程中的數學,看起來卻像一門實驗性的歸納科學?!比罩屏x務教育《數學課程標準》中也明確指出:“學生的數學學習內容應當是現實的、有意義的、富有挑戰(zhàn)性的,這些內容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。……動手實踐、自主探索與合作交流是學生學習數學的重要方式?!钡牵诋斍暗某踔袛祵W教學中,教師往往過分強調形式化的邏輯推導和演繹推理,注重形式化結果的呈現與確定,而忽視探索數學知識形成過程中的實踐活動,忽視引導學生通過數學實驗進行大膽猜想、驗證猜想并創(chuàng)造性地解決問題的過程。即使有少數教師認識到了初中數學實驗教學的重要性,并在課堂教學實踐中進行了大膽的嘗試,但由于缺乏初中數學實驗教學的相關理論支持與經驗總結,教學效果也不甚理想。

當前,現代信息技術的發(fā)展已經對初中數學教學和數學學習方式的改變都產生了重要的影響,我們應當“把信息技術作為學生學習數學和解決問題的強有力工具,致力于改變學生的學習方式”,有意識地把信息技術與初中數學實驗教學相整合,利用信息技術為學生提供“多元聯系表示”的學習環(huán)境;發(fā)揮信息技術在文本、圖形、圖像、動畫、視頻、聲音等多種媒體集成方面的優(yōu)勢,創(chuàng)設圖文并荗、動靜結合、聲情融會、視聽并用的數學實驗環(huán)境,以利于初中生開展數學實驗并獲得成功。同時,利用信息技術的交互學習功能,讓學生現場計算、現場畫圖、現場證明,使數學研究、學習的方法從原來的紙筆加思維的模式發(fā)展到計算機加思維的模式,更有利于展示數學的思維過程,培養(yǎng)學生自主學習的意識和創(chuàng)新能力。

二、國內外關于同類課題的研究綜述

在西方發(fā)達國家中,數學實驗已經成為中學數學教學中常見的課堂教學形式。美國的中學內有專門的數學實驗室,英國的中學數學教材中也有許多的實驗材料,他們經常讓學生利用信息技術去做“數學實驗”,進而“發(fā)現”數學結論。

在我國,《數學課程標準》中提出了開展數學實驗的要求,新課程初中數學教材中也出現了諸如“想一想”、“看一看”、“做一做”等數學實驗的內容。江蘇省揚州市竹西中學的張曉林老師進行了“初中數學實驗課的教學設計及操作研究”,浙江省溫州市教研室的胡敬民老師進行了“初中數學教學中數學實驗的研究”。但是,這些實驗研究主要是探索了初中數學實驗課的教學設計和初中數學教學中開設實驗課的一般性操作。對如何將信息技術融入到初中數學實驗教學的過程之中,如何利用現代信息技術的交互性,在初中數學實驗教學中突出學生的主體地位,發(fā)揮學生的主觀能動性,培養(yǎng)學生自主學習的習慣和創(chuàng)新意識等問題,涉及得很少。因此,本課題在全面推進初中數學課程改革、探索現代信息技術與初中數學實驗教學的有效整合中,具有很豐富的實踐意義和理論價值。

三、課題研究的理論依據

1.數學“再創(chuàng)造”的學習理論。

荷蘭著名的數學教育家弗賴登塔爾認為:“數學教學方法的核心是學生的‘再創(chuàng)造’?!彼J為在數學教學中,教師不必把各種概念、法則、公理、定理全灌輸給學生,而是應該創(chuàng)造適合的條件,提供很多作為知識載體的具體情境,讓學生在實踐中,自己“再創(chuàng)造”出各種數學知識。我們在初中數學課堂教學中,借助現代信息技術為學生創(chuàng)設一個“再創(chuàng)造”的學習環(huán)境,讓學生學習數學的過程置身于一個“數學實驗室”之中,學生可以觀察并嘗試錯誤、可以發(fā)現并進行猜想,有助于學生在具體的環(huán)境中養(yǎng)成“用數學”的習慣,克服他們學習數學而不應用數學的弊病。

2.《數學課程標準》的新理念。

《數學課程標準》指出,現代信息技術要“致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現實的、探索性的數學活動中去。”我們把信息技術與初中數學實驗教學相整合,正是把信息技術作為學生學習與探索數學知識的有力工具、作為發(fā)展學生的理解和興趣的重要手段,讓學生由“聽數學”轉為“做數學”,從被動接受變?yōu)橹鲃咏嫞瑥亩箤W生學會思考、學會學習、勇于創(chuàng)新。

四、課題研究的內容與預期目標

1.課題研究的主要內容。

(1)信息技術與初中數學實驗教學整合的理論體系的研究。包括信息技術條件下開展初中數學實驗教學的可行性研究,信息技術與初中數學實驗教學整合效果的分析研究,以及信息技術條件下的初中數學實驗教學的評價方式的研究。

(2)基于現代信息技術條件下的初中數學實驗教學的教學策略與教學模式的研究。包括初中數學實驗課的組織策略,借助信息技術營造初中數學實驗情景的策略,以及利用信息技術進行教學對話與師生交互實驗的組織方式的研究。

(3)現行初中數學教材中適宜借助信息技術開展數學實驗的學習內容的選擇與確定,初中數學實驗課的教學課件的設計原則與方法研究,初中數學實驗課的學習積件的制作與共享方式的研究。

2.課題研究的預期目標。

本課題研究的預期目標是:運用新課程理念和數學“再創(chuàng)造”的學習理論,通過教學實踐與實驗研究,努力探索信息技術與初中數學實驗教學相整合的理論與方法,總結歸納信息技術條件下的初中數學實驗教學的教學模式與評價方式,設計一批初中數學實驗課的教學課件與學習積件,為廣大初中數學教師參與數學課堂教學改革、嘗試初中數學實驗教學提供豐富的理論基礎與實踐經驗。

五、課題研究的方法與步驟

1.課題研究的主要方法。根據上述的研究目標和研究內容,本課題主要采用文獻資料法、行動研究法和經驗總結法。

(1)在研究初期,通過查閱文獻資料,了解國內外此項研究的最新動態(tài)和相關課題的研究成果,收集與本課題研究相關的理論資料。

(2)采用行動研究的方法,逐步完成基于現代信息技術的初中數學實驗課的教學設計與教學模式的實驗研究,完善借助于信息技術的初中數學實驗課的一般操作技術與評價體系。

(3)通過課題小組成員間的交流與研討,及時對本課題研究的過程、成效進行總結,探索出信息技術與初中數學實驗教學整合的一般途徑與方法,開發(fā)設計相應的教學資源,形成一批優(yōu)秀的教學案例。

2.課題研究的過程及步驟。

(1)準備階段:2006年5月—2006年6月,搞好課題設計,成立課題研究小組,制定具體的研究方案和工作措施。

(2)研究初期:2006年7月—2006年8月,查閱相關的文獻資料,了解國內外相關研究的動向及成果,培訓課題小組成員。

(3)研究中期:2006年9月—2007年7月,開展課題的各項研究,撰寫相關論文。

①2006年9月—2006年10月,確定適合借助于信息技術開設數學實驗的初中數學學習內容。

②2006年11月—2006年12月,按照確定的學習內容,編寫初中數學實驗課的教學設計,制作相應的教學課件與學習積件。

③2007年1月—2007年5月,組織課題小組成員利用教學設計、教學課件與學習積件,進行課堂實踐。

④2007年6月—2007年7月,針對課堂教學中出現的問題進行反思,并撰寫教學論文和教學心得。

(4)研究末期:2007年8月—2007年10月,組織課題小組成員進行實驗反思,整理教學設計與教學課件,總結信息技術與初中數學實驗教學整合的途徑與方法,收集部分優(yōu)秀的教學案例,完成課題研究報告。

六、課題研究的條件分析

1.領導決策保障。我校領導具有極強的科研意識,十分重視教科研工作;本課題研究得到學校領導的高度重視,校長與教導主任親自參與課題實驗,學校必將從人力、物力和財力上給予大力的支持。

2.師資力量保障。承擔本課題研究的數學教研組連續(xù)兩次被評為區(qū)優(yōu)秀教研組,教研組內有著濃厚的教科研氛圍和極強的科研能力;課題負責人胡榮進老師是區(qū)數學青年骨干教師,長期擔任校數學教研組長,撰寫的論文多次在省、市、區(qū)級評比中獲獎;課題組成員葉甘新老師是區(qū)數學學科帶頭人,多年擔任校教導主任和區(qū)數學教研大組組長,主持的區(qū)重點課題獲區(qū)二等獎;課題組其他成員均來自教學第一線,有著豐富的教學經驗和課改意識,有深厚的課題研究的能力基礎。

3.硬件條件保障。學校有專門的學生計算機房,即將建成多媒體教室,建立了校園局域網,開通了“校校通”,這些硬件設施為順利完成本課題研究提供了強有力的物質保障。

七、課題研究成果的展示形式

1.課題研究報告。

2.編撰《初中數學實驗課課堂教學設計集》,建立初中數學實驗課的教學課件與學習積件資源庫。

3.拍錄部分優(yōu)秀教學課堂實錄,整理一批優(yōu)秀的課堂教學案例。

4.編寫《“信息技術與初中數學實驗教學整合的研究”實驗論文匯編》。

八、課題研究的人員分工

組長:胡榮進,全面策劃,主持研究,主寫課題報告,負責八年級數學實驗課的具體實施與資料整理。

成員:余芳浩,收集研究資料、整理教學案例,負責協(xié)調人、財、物的保障。

葉甘新,組織理論學習,負責七年級數學實驗課的具體實施與資料整理。

徐衛(wèi)華,做好活動記錄,負責九年級數學實驗課的具體實施與資料整理。

徐國紅,負責初中數學實驗課教學課件與學習積件資源庫的建設與調試。

參考文獻

[1]中華人民共和國教育部.數學課程標準[M].北京師范大學出版社,2001年7月.

[2]侯立偉.信息技術利于數學實驗的開展[J].數學教育學報,2006,15(1).

篇3

關鍵詞: 初中數學 “學、講、練” 高效課堂

新課改下,各種教學模式應運而生,“先學后教”、“講練結合”、“學講模式”、“3*15模式”、“2-7-1模式”等課堂模式,為我們的課改提供了優(yōu)秀的模板和可行的套路。雖然這些模式從課改模式的名稱上看都“標新立異”,但仔細分析,無不以體現學生的主體地位為主要出發(fā)點,注重學生參與、互動、發(fā)展的過程,以提高學生的綜合能力為主要途徑。

探討諸多的課堂模式,其精髓都聚焦在“學”、“講”和“練”三個字,讓學生“學進去”,再“講出來”,再通過“訓練”――當堂反饋,鞏固提升,課后拓展等,強化知識的掌握、技能的形成、能力的提高。下面我結合初中數學教學案例,談談“學―講―練”模式在初中數學教學中的實踐體會。

一、學

學生的學,包括課前學、課堂上學及課后學。而自主學習主要是課前的學習――預習,預習是學生學會學習、自主構建知識的關鍵和核心。課前預習導學案的精心設計,是良好預習效果的根本保障。

預習學案應體現教學目標和預習任務,以任務的完成促進學生對知識的構建。以七年級的《相反數》為例,預習學案可以這樣設計:

a.在數軸上找出1.5和-1.5,3和-3等點,并觀察這每一組數所對應的點,有哪些相同和哪些不同點?

相同點是?搖 ?搖?搖?搖;不同點有?搖?搖 ?搖?搖。

b.根據1.5和-1.5、3和-3,我明白了什么是相反數?相反數的定義是?搖?搖 ?搖?搖。

c.根據這幾組數載數軸上的位置,觀察得到相反數的兩個點和原點的關系是?搖?搖 ?搖?搖。由此,得出一般性的概念:a的相反數是?搖?搖 ?搖?搖;a可以是?搖?搖 ?搖?搖,可以是?搖?搖?搖 ?搖,也可以是?搖?搖 ?搖?搖。

d.判斷以下幾個句子的正誤:

(1)一個數的相反數一定是負數。

(2)只有0的相反數是其本身。

(3)符號相反的兩個數是相反數。

e.說一說-(-7.5)、-(+100)的含義。

這樣的預習任務,使學生從整體上把握要學習的內容和達到的目標要求,并設計相應的思考題和練習題,檢測對知識的理解和領悟,使學生的預習有針對性和方向性,使預習不流于形式,而走向高效。

二、講

在“學―講―練”中,“講”處于心臟位置,是高效課堂的核心和關鍵。講包括教師的講和學生的講。

1.學生的“講”

學生通過課前自主預習,在課堂上“講出來”,既可以加深對知識的理解和記憶,又可以起到同學間彼此借鑒、相互交流的作用,并且,在課堂上學生由被動地聽轉變?yōu)檎n堂的主人、知識的主人,從被動地“倉儲”轉化為主動地“構建”和“占有”,增強學習信心,提高成就感。

學生的“講”除了自主預習的體會和心得之外,主要體現在課堂上對教師提出的問題的思考和看法,說出自己的想法和建議,陳述對問題的解決的方法和思路。如學習《相反數》時,在學生探討了相反數的意義等后,教師提出思考練習:化簡-(+2);-(-2.3);+(+5.8),通過化簡,你發(fā)現了什么規(guī)律?對于這個問題,化簡都不是問題,而對于這個規(guī)律性的探討和總結的問題,需要學生思考、討論和總結,對于這幾個化簡題,讓學生演算并說出思路及問題的探討結果。這樣,避免老師的“一言堂”,避免課堂的枯燥乏味。

2.教師的“講”

教師“講”主要體現在以下三個方面:

(1)講“情境”。情境的創(chuàng)設可以構建樂學、善思的氛圍。如學習《相交線》時,教師通過生活中的一些生活圖片的觀察,問學生是否能看到相交線和平行線;呈現一把剪刀剪紙的圖片,把緊剪刀的把手,就能剪開物體,你能說出其中的道理嗎?如果讓你把這個剪刀抽象成一個幾何圖形,會是什么圖形?并在自己的課堂筆記上畫出來。并對畫出的圖形仔細觀察,兩條直線相交時,判斷所形成的四個角的關系……

類似的“導學”情境的創(chuàng)設,“導學”思考題的提出,促使學生動起來。

(2)講方法和思路

數學方法是數學之魂,我們應“授之以漁”,注重數學方法的點撥和引導。如上文剛提到的兩條直線相交時,觀察和體會相交所形成的四個角的關系,對于這個問題,方法的點撥和引導很關鍵。教師可以從鄰角、鄰補角、對頂角的定義出發(fā),引導學生判斷出對頂角相等、鄰角互補。

(3)講重難點和疑點

每一節(jié)課都有重點、難點和疑點,重難點無疑是教學中教師應重視的部分,應該針對重難點和疑點,巧妙設計問題,精心設計練習,巧妙點撥,為學生撩開迷霧,利于學生利用數學思想、數學語言而思維。如對于《相交線》的性質:對頂角相等的用數學語言寫出這個判斷的理由和過程,這個是教學難點。讓學生通過折紙的方法而得出對角線相等后,上升到數學語言,顯然對學生是難點,對這個問題的方法指導毋庸置疑,忽視不得。

三、練

數學教學雖然新課改倡導拒絕題海戰(zhàn)術,但數學學習,猶如武術,光有“拳腳”理論和套路,沒有實踐和實戰(zhàn),永遠是“花拳繡腿”。

練首先體現在課前預習的練習,使學生在預習時,除了關注基礎知識――概念、定義、定理、推論等,還應該通過一定的思考題、練習題加深對知識的運用和理解;其次是課堂上的有針對性的訓練,是知識到運用的升華,是鞏固知識的手段和方法;再者,課后的反饋練習,更是檢查學生課前、課中的學習情況的必要手段。

當然,在練的過程中,糾錯和評價是不可忽視的環(huán)節(jié),對學生的善思、會用也起到決定性作用。

高效課堂不再單是“傳道、授業(yè)、解惑”為目的,而是構建“親其師,信其道”的氛圍,應追求價值,不斷創(chuàng)新教學理念和模式,通過“學―講―練”,讓學生發(fā)揮自主、合作、探究的主體作用,真正實現高效課堂。

參考文獻:

篇4

小組合作學習,是現階段新課程改革以來,初中數學教學領域公認的有效教學策略之一。實踐證明,科學應用小組合作的課堂教學方式,可以顯著提高課堂教學有效性和學生的學習效率。探究、自主、合作是初中數學小組合作教學的三大原則,在初中數學教學中,只有充分遵循這三點原則開展小組合作教學,才能真正提高初中數學小組合作的有效性,達到最佳小組合作教學效果。在實踐教學中,一些教師未能在初中數學教學中應用小組合作取得良好教學效果,就是因為忽略了小組合作教學的這三點原則?;谶@三點原則,本文對初中數學小組合作教學中的相關問題展開分析。

2.初中數學中小組合作教學的必要性

在新課程改革背景下,初中數學教學中開展小組合作教學具有顯著的必要性,是提高初中數學教學效率的有效手段?,F將初中數學教學中應用小組合作的必要性總結如下。

2.1提高學生的數學探究能力

在初中數學學習中,數學探究能力非常重要,具備了數學探究能力的學生,往往能夠在學習過程中舉一反三,學習效果事半功倍,而未掌握數學探究能力的學生,往往在數學學習過程中效率低下,事倍功半。在初中數學教學中應用小組合作教學,對于提高學生的數學探究能力大有裨益,在小組合作中,小組成員相互之間的討論和分析,有助于幫助探究能力差的學生提升其數學探究能力[1]。

2.2提高學生的自主分析能力

在初中數學課堂小組合作過程中,各個小組成員之間的分析探討都是建立在每個成員自主分析的基礎上的,只有自己對所討論的問題進行了分析并產生觀點的基礎上,才能加入小組分析合作中。因此,小組合作式的教學方式可以在很大程度上對學生的自主分析能力進行刺激,學生在小組合作中為了得到觀點,為了說服其他成員認可自己的觀點,會積極地對所討論的數學問題進行自主分析,并一次次用語言論證自己的觀點。在這樣的過程中,小組成員的自主分析能力可以得到良好鍛煉,并逐漸形成自主分析問題并得到結論的良好習慣,這對于學生其他科目的學習及今后的知識擴展都非常有利。

2.3提高學生的小組合作能力

新課程標準要求初中生在學習過程中實現全面發(fā)展,這其中也包括學生小組合作能力的發(fā)展。在當今世界,沒有一項大工程不是通過多個成員的通力合作完成的,因此培養(yǎng)初中生的小組合作能力可謂非常重要。在初中數學教學中開展小組合作,就是培養(yǎng)學生小組合作能力的一個效果良好的方式。在小組合作過程中,學生和學生之間可以充分交換意見,每個學生都在思考、反思、討論、分析,由此驗證自己觀點和別人的觀點,通過分析、辯論,最終得到對于一個問題的統(tǒng)一結論,在這個過程中,學生的小組合作能力可以得到充分鍛煉,包括學生的分析能力、表達能力、辯論能力、總結能力及歸納能力等[2]。

3.初中數學中小組合作教學的開展策略

在初中數學教學中,開展小組合作教學必須遵循科學的原則,采用合理的策略,如此方可達到最佳教學效果與鍛煉效果。在對多個教學案例進行歸納分析的基礎上,現將可行的、科學的初中數學小組合作教學開展策略總結如下。

3.1小組合作時機的合理選擇

小組合作固然可以取得不錯的教學效果,但在實際的初中數學教學中,對于小組合作的應用也不可過頻、過濫,必須選擇合適的時機。因為過頻、過濫地應用小組合作,會造成學生的反感,導致教學效果弱化,并且,不是所有教學內容都適合應用小組合作,教師在這方面必須科學決策。一般來說,對于較簡單且固定的教學內容,不適于應用小組合作,教師直接進行講解結合學生自己的思考就可以完成教學。

3.2小組成員的科學搭配

在進行小組合作之間,數學教師應當根據對學生學習情況及學習能力的了解,結合學生的座位情況對各個小組的成員進行合理搭配,具體來說,每個小組中成員搭配應當做到:第一,保證每個小組中都有善于思考問題、分析問題、學習成績較好的學生,在分析討論中由這樣的學生對其他學習成績較差或者分析能力較差的學生起到一定的帶動作用,同時可以使每個小組都通過討論得到正確的結論;第二,各個小組的人數應當合理,一般來說,在小組合作中每個小組的成員以3到5名為宜,過少不能形成良好的討論氣氛,過多則不利于每個學生充分發(fā)表自己的意見;第三,在某個小組經常出現小組合作效果差的情況時,應當及時分析原因并調換小組成員,使各個小組的小組合作都可以順利開展并取得良好的合作效果。

3.3所討論的問題的科學設計

在初中數學小組合作教學中,教師必須首先設計一個具有討論價值的、能夠強化學生學習效果和分析能力的問題,對于這樣的問題的討論才是有意義的、有必要的。具體來說,在設計所討論的問題時應當做到:第一,所討論的問題或者內容要和當堂課的數學教學內容聯系緊密,最好是教學內容中容易產生分歧的或者容易出現理解偏差的問題,對于這樣的問題的討論可以使學生所學知識更扎實且使學生對知識的理解更深刻;第二,所討論的問題必須具有討論價值、分析價值,最好選擇學生對其具有多種不同見解的問題,對于這樣的問題的討論才是有意義的、有討論必要的,否則如果學生對于一個問題的見解都相同,那么在討論過程中必然會出現無對象可辯論的情況,不利于小組合作效果的強化。

篇5

在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節(jié)課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出)。以下是小編為大家整理的初中數學教學案例參考資料,提供參考,歡迎你的閱讀。

初中數學教學案例參考一

教學目標

1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養(yǎng)分類能力;

2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

3, 體驗分類是數學上的常用處理問題的方法。

教學難點

正確理解分類的標準和按照一定的標準進行分類

知識重點

正確理解有理數的概念

教學過程(師生活動) 設計理念

探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節(jié)課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

問題1:觀察黑板上的9個數,并給它們進行分類.

學生思考討論和交流分類的情況.

學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

例如,

對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.??…(由于小數可化為分數,以后把小數和分數都稱為分數)

通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.

按照書本的說法,得出“整數”“分數”和“有理數”的概念.

看書了解有理數名稱的由來.

“統(tǒng)稱”是指“合起來總的名稱”的意思.

試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

2,教科書第10頁練習.

此練習中出現了集合的概念,可向學生作如下的說明.

把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;

數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

也可以教師說出一些數,讓學生進行判斷。

集合的概念不必深入展開。

創(chuàng)新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

有理數 這個分類可視學生的程度確定是否有必要教學。

應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

小結與作業(yè)

課堂小結

到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

本課作業(yè)

1, 必做題:教科書第18頁習題1.2第1題

2, 教師自行準備

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概

念.分類是數學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進

行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分

類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

初中數學教學案例參考二

教學目標:

1、明白生活中存在著無數表示相反意義的量,能舉例說明;

2、能體會引進負數的必要性和意義,建立正數和負數的數感。

重點:通過列舉現實世界中的“相反意義的量”的例子來引進正數和負數,要求學生理解正數和負數的意義,為以后通過實例引進有理數的大小比較、加法和乘法法則打基礎。

難點:對負數的意義的理解。

教學過程:

一、知識導向:

本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數范圍上擴充,對引進“負數”這一概念的必要性及意義的理解。

二、新課拆析:

1、回顧小學中有關數的范圍及數的分類,指出小學中的“數”是為了滿足生產和生活的需要而產生發(fā)展起來的。

如:0,1,2,3,…, ,

2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發(fā)現事物之間存在的對立面。

如:汽車向東行駛 3千米和向西行駛2千米

溫度是零上10°C和零下5°C;

收入500元和支出237元;

水位升高1.2米和下降0.7米;

3、 上面所列舉的表示相反意義量,我們也許就會發(fā)現:如果只用原來所學過的數很難區(qū)分具有相反意義的量。

一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(零除外)前面放上一個“—”號來表示。

如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C

概括:我們把這一種新數,叫做負數, 如:-3,-45,…

過去學過的那些數(零除外)叫做正數,如:1,2.2…

零既不是正數,也不是負數

例:下面各數中,哪些數是正數,哪些數是負數,

1,2.3,-5.5,68,-,0,-11,+123,…

三、階梯訓練:

P18 練習:1,2,3,4。

四、知識小結:

從本節(jié)課所學的內容中,應能從數的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現相反意義量,能理解引進“負數”的必要性及其意義。

五、作業(yè)鞏固:

1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數來表示;

2、分別舉出幾個正數與負數(最少6個)。

3、P20 習題2.1:1題。

初中數學教學案例參考三

教學目標:

1、理解有理數的概念,懂得有理數的兩種分類,及對一個有理數進行分類判別;

2、在數的分類中,應加強對負數的理解及對零在數分類中的特殊意義的理解。

重點:在引進負數后,能對已有的各種數進行概括,理解有理數的意義,及有理數的兩種不同分類的重要意義。

難點:在對有理數的認識上,應加強對負數及零的重視,明確兩者在有理數集的地位與作用。

教學過程:

一、知識導向:

通過上節(jié)課對“負數“概念的引入,通過對數范圍的補充及擴大,進一步引入了有理數的概念,并對擴大后的數的范圍進行重新分類。

二、新課拆析:

1、引例:(1)請學生說出負數的特征,并指出實例說明。

(2)以第(1)題中,學生所回答的數進一步分析,不同數的不同特點。

2、通過對“負數”的引入,從我們所接觸的數可發(fā)現有這樣幾類:

正整數:如1,2,34,…

零:0

負整數:如-1,-3,-5,…

正分數:如 …

負分數:如 -0.3,…

由此我們有:

概括:正整數、零和負整數統(tǒng)稱為整數;

正分數、負分數統(tǒng)稱為分數;

整數和分數統(tǒng)稱為有理數。

然后根據我們的概括,我們可以對有理數進行如下的分類

分類一: 分類二:

正整數 正整數

整數 零 正有理數 正分數

有理數 負整數 有理數 零

分數 正分數 負有理數 負整數

負分數 負分數

3、有關集合的簡單知識:

概括:把一些數放在一起,就組成一個數的集合,簡稱為數集;

所有的有理數組成的數集叫做有理數集;

所有的整數組成的數集叫做整數集;……

例:把下列各數填入表示它所在的數值的圈里:

-18,3.1416,0,2001,-0.142857,95%

正整數 負整數

整數集 有理數集

三、鞏固訓練: P20 ,練習:1,2,3

四、知識小結:

從有理數的分類入手,就著重于各類數的特點,特別是正,負及零的處理。

五、作業(yè):

篇6

關鍵詞:教學案例;教材分析;學情分析

一、教材分析

“平行線的特征”是北師大版七年級數學(下冊)第二章第三節(jié)的內容。它是在學生已經初步了解并且學習了平行線的概念、平行線的判定等內容的基礎上進行教學的。它是直線平行的繼續(xù),是空間與圖形領域的基礎知識,是后面學習和研究平移、三角形內角、三角形全等、三角形相似以及平行四邊形等知識的基礎,所以學好這部分內容至關重要。

二、學情分析

1.學生的知識技能基礎

通常,平行線的基礎學習在小學階段已經開始,因此,學生對其特征有一定的了解,只是還不夠深入。在學習“平行線的特征”之前,學生已經學習了平行線的判定方法,并能夠利用其解決一些問題,讓學生對同位角、內錯角和同旁內角的概念及應用有了一定的了解,這些知識儲備為學生接下來的平行線特征學習奠定了良好的知識技能基礎。

2.學生的活動經驗基礎

在前面知識的學習過程中,學生已經經歷了一系列的數學活動,積累了初步的數學活動經驗,具備了一定的圖形認識能力、借助圖形分析能力和解決實際問題的能力,并且初步掌握了在直觀認識的基礎上進行合情說理和直觀與簡單說理相結合的方法,初步感受到推理說明的必要性與作用。同時,在以往的數學教學中,學生已經經歷了多次合作學習的過程,具備了與同學溝通交流的能力,積累了相當多的合作學習經驗。

三、教學目標

從整體上看,數學課程教學目標包括結果目標和過程目標。結果目標使用“了解、理解、掌握、運用”等術語表述,過程目標使用“經歷、體驗、探索”等術語表述。

1.知識與技能

通過本章節(jié)的學習,要讓學生充分掌握平行線的特征,能利用其特征解決相關數學問題。

2.過程與方法

在平行線的特征教學過程中,要讓學生經歷觀察、猜想、比較、聯想、分析、歸納、概括的全過程。通過對平行線的特征的學習,使學生逐漸形成數形結合的數學思想,以及提高學生的建模能力、創(chuàng)新意識和創(chuàng)新精神。

3.情感態(tài)度與價值觀

在探究活動中,讓學生獲得親自參與研究的情感體驗,增強學生學習數學的興趣和熱情,培養(yǎng)學生團結協(xié)作的精神,激發(fā)學生探索未知知識的欲望。

四、教學重點和難點

本章節(jié)的教學重點是平行線特征的探索及應用。教學難點是平行線特征的探究和平行線的判定與特征的區(qū)分以及綜合應用。

五、教學設計

《義務教育數學課程標準》強調:“數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。”本課堂將以“生活?數學”“活動?思考”“表達?應用”為主線開展課堂教學,以學生看得見、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數學知識,同時通過小組內學生相互協(xié)作探討,培養(yǎng)學生的合作性學習精神。

六、教法和學法

為了避免傳統(tǒng)的單向灌輸式教學帶來的不良后果,教師要注意轉變觀念、轉換角色,讓學生真正成為課堂的主人,在課堂中選用引導探索、自主探究、合作交流等教學方法,希望通過這些教學方法,讓學生形成自主學習、合作學習的良好習慣。

在學習方法上,教師要注意引導。俗話說:“老師引進門,修行靠個人?!币虼耍瑢W生要主動動手畫圖、測量、對比,主動動腦猜想、討論、分析、思考,在自主探索的活動過程中形成自己獨有的觀點,逐步培養(yǎng)學生勤于動手、樂于思考、勇于表達的學習習慣,提高學生的學習能力。

七、教學設備和教輔用具

在數學教學前,必要的工具準備是必須的,比如,多媒體、相關課件、三角尺、量角器、剪刀以及其他紙質模型等。

八、教學過程

1.創(chuàng)設情境,設疑激思

(1)提問導入

首先,教師可以在教授知識前,設置一個導入性的問題。譬如:“日常生活中我們經常會遇到平行線?能說出直線平行的條件嗎?”學生思考后回答時可能說出以下答案:①同位角相等,兩直線平行;②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行。如果學生不能完整地回答,教師應當做一些適當的補充。

(2)深入再問

這是導入問題后的第二個步驟,在第一個問題的基礎上再一次提出問題。接下來,可以結合圖形提問,例如,“如圖1是在三星堆考古工作中發(fā)掘出的一個殘缺玉片,工作人員復原后發(fā)現其形狀是梯形(如圖2),并且已經量得∠A=115°,∠D=100°。你能不能求出另外兩個角的度數?”帶著這個問題,教師就可以引出本課堂的內容,即平行線的特征(板書在黑板上),由此引出課題。

設計意圖:通過復習平行線的判定和生活中的實例來引入新課程,一是溫故知新,促使學生實現知識思維的正遷移;二是提高學生的學習興趣,激發(fā)學生探索知識的熱情,使學生認識到數學來源于生活,又服務于生活。

2.數形結合,探究特征

(1)畫圖探究,歸納猜想

教師提要求,讓學生實踐操作。比如,讓學生任意畫出兩條平行線(a∥b),畫一條截線c與這兩條平行線相交,標出8個角(注:統(tǒng)一采用阿拉伯數字標角)。接著教師可以提出研究性問題一:請指出圖中的同位角,并度量這些角,把結果填入下表:

緊接著教師提出研究性問題二:將圖中的任意一對同位角剪下后疊合。

學生活動一:畫圖―度量―填表―猜想

學生活動二:畫圖―剪圖―疊合

讓學生根據活動得出的數據與操作得出的結果歸納猜想,如兩直線平行,同位角相等。

最后,再提出研究性問題三:再畫出一條截線d,看你的猜想結論是否仍然成立?

學生活動:探究并進行小組討論,從而得出結論仍然成立。

(2)展示平行線的特征

兩條平行線被第三條直線所截,同位角相等。簡記為:兩直線平行,同位角相等。

設計意圖:此環(huán)節(jié)為本課堂的重點內容,所以給學生留有充分的操作和探索空間,讓學生通過測量、剪拼、猜想、討論、歸納概括出平行線的特征,讓學生在充分的活動中能發(fā)揮自己的聰明才智,用不同的方法來驗證結論,開拓學生的思維,培養(yǎng)學生的創(chuàng)新能力,也讓學生體會從特殊到一般的數學思想。當然,最重要的是培養(yǎng)學生的操作能力,為以后探究更多更復雜的圖形性質打好基礎,積累經驗。

3.合作探究,歸納結論

教師提出研究性問題四:請判斷兩條平行線被第三條直線所截,內錯角、同旁內角各有什么關系?

學生活動:獨立探究―小組討論―成果展示。

教師活動:評價學生的研究成果,并引導學生進行簡單的

說理。

如圖3,因為a∥b(已知)

所以∠1=∠2(兩直線平行,同位角相等)

又因為∠1=∠3(對頂角相等)

所以∠2=∠3(等量代換)

又因為∠1+∠4=180°(鄰補角的定義)

所以∠2+∠4=180°(等量代換)

教師展示:

平行線的特征2:兩條平行線被第三條直線所截,內錯角相

等。簡記為:兩直線平行,內錯角相等。

平行線的特征3:兩條平行線被第三條直線所截,同旁內角互補。簡記為:兩直線平行,同旁內角互補。

設計意圖:通過學生的自主探究和師生之間的合作交流,讓

學生體會與他人合作的重要性,體會轉化、歸納的數學思想。在說理和歸納的過程中,鼓勵學生大膽發(fā)表自己的見解,培養(yǎng)學生的推理能力和語言表達能力。

4.辨析關系,加深理解

教師提出研究性問題五:平行線的判定與平行線的特征有什么區(qū)別和聯系?

學生活動:獨立思考―填寫下表―成果展示。

教師活動:歸納總結――證平行,用判定;知平行,用特征。

設計意圖:通過表格的填寫,讓學生從結構特征上明晰平行線的判定和特征的區(qū)別與聯系,加深對結論的理解,明確在解決具體問題時如何選擇運用判定和特征。

5.實際應用,深化理解

為了深化和鞏固所學知識,教師應當舉一些典型的例子進行講解。

例1.如圖4,已知AD∥BC,AB∥DC,∠1=100°,求∠2,∠3的度數。

例2.如圖5,一束平行光線AB與DE射向一個水平鏡面后被反射,此時∠1=∠2,∠3=∠4。(1)∠1,∠3的大小有什么關系?∠2與∠4呢?(2)反射光線BC與EF也平行嗎?

設計意圖:例1是特征的直接應用,例2是判定與特征的綜合應用,題目的難度都不大,主要是讓學生體會知識的應用和推理論證過程,感悟推理的依據和結論之間的關系,養(yǎng)成合情推理的習慣。例2要求學生進行小組討論、綜合分析、自主提高,使學生能夠靈活應用平行線的判定和特征來解決問題。

6.練習鞏固,應用提高

課后教師應當布置一些練習題目,比如,1.解答本課堂前面提出的“殘缺玉片”問題;2.課本隨堂練習。

設計意圖:通過布置練習題的方式,既鞏固了新知,又訓練了學生思維的靈活性與開闊性,還能讓教師及時發(fā)現問題,做好評講糾正工作。

7.梳理反思,感悟收獲

最后教師可以進行總結性的提問,如:談談本課堂你的收獲?

(1)學生總結:a.平行線的特征;b.平行線的判定與特征的

異同。

(2)教師補充總結:a.用“運動”的觀點觀察數學問題(如我們前面將同位角剪下疊合后分析問題);b.用數形結合的方法來解決問題(如我們前面將同位角測量后分析問題);c.用準確的語言來表達問題(如平行線的特征表述);d.用邏輯推理的形式來論證問題(如我們前面對特征2和3的說理過程及例題的解答過程)。

設計意圖:引導學生對知識進行再回顧,加強理解,形成知識體系,為運用打牢基礎。

8.分層作業(yè),培養(yǎng)能力

進行總結性發(fā)問后,教師還要布置適量的作業(yè),并把作業(yè)分成必做題、選做題以及實習作業(yè)等,這就是檢驗學生是否將知識消化的措施。

設計意圖:學生可以根據自己的學習水平去自行選擇選做

題,減少不必要的作業(yè)負擔,使不同層次的學生得到不同的發(fā)展。通過作業(yè)進一步鞏固所學知識,使之學有所用。

數學教學要注重引導學生探索與獲取知識的過程,而不僅僅是注重學生對知識內容的汲取,因為“過程”不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數學知識解決問題的能力;能夠感受生活與數學的聯系,獲得“情感、態(tài)度、價值觀”方面的體驗,讓學生親身體驗到數學知識來源于實踐,從而激發(fā)學生的學習積極性。同時,課堂設計為學生提供了大量操作、思考和交流的機會,學生通過“操作―思考―交流”的過程層層深入,最終得出了平行線的三個特征。通過這樣的過程,學生逐步體會到數學知識的產生、形成、發(fā)展與應用的過程。另外,在教學過程中還需要注重引導學生在具體操作活動中進行獨立思考,鼓勵學生發(fā)表自己的見解。通過自主發(fā)現問題、探索問題、獲得結論的學習方式,還有利于培養(yǎng)學生獨立思考的能力。當然,筆者的教學方式也有一些不足之處,駕馭課堂的能力還有待加強。

參考文獻:

[1]董彩君.初中數學“情境―問題―討論―反思”教學模式的實踐研究[D].華東師范大學,2008.

[2]孫雅琴.滲透數學基本思想的初中數學課堂教學實踐研究[D].重慶師范大學,2012.

[3]耿巖.初中數學課堂情境探究式教學模式的應用探索[D].揚州大學,2011.

[4]牟麗華.幾何畫板優(yōu)化初中數學教學的案例研究[D].重慶師范大學,2012.

[5]張力瓊.初中數學教學中滲透數學思想方法的教學策略研究[D].西北師范大學,2007.

[6]尤如龍.從一次課堂上的教學案例來認識初中數學教學[J].數學學習與研究,2011(6):80.

[7]聶芬.初中數學教學中“支架式”教學模式的應用研究[D].西北師范大學,2012.

篇7

關鍵詞:初中;數學;問題導學;方式

初中的數學教師與其它學科教師存在差異性,其不但要教會初中學生學會相關的數學知識,還要教會學生應用數學思維解決現實問題,并且?guī)椭麄儤嫵勺灾鲗W習、科學學習的觀念。同時,因為初中數學教學并不容易,所以初中數學及時一定要選擇正確的、合理的教學方案,才能逐步指導學生完成教學工作,從而提升學生的學習能力和解決能力。由此可見,在初中數學教學中,應用問題導向的學習方案可以有效達到這一目標,以此解決數學教學中的問題。

一、初中數學教學中應用問題導學的意義

其主要分為以下兩方面,一方面,初中數學是一個綜合性非常強的學科,學生不但要全面了解理論知識,還要讓學生可以正確應用這些數學知識解決現實問題,培育學生在生活中發(fā)現問題、思考問題以及解決問題的能力,以此有效提升學生的數學思維。正確應用問題導學法,就是在教學中有效提升學生的研究能力和問題解決能力,并且在實際教學中引導學生牢固掌握這些數學知識。另一方面,教師作為課堂的指導者、學習者,有責任、有義務整改數學課堂教學,其要求教師不但要全面分析好研究教學案例,還要全面分析教學課堂內容,突破傳統(tǒng)意義上“灌溉式”教學方案的影響,展現出學生在課堂中的自主性,調動學生學習的興趣,以此拓展數學學習范圍。在初中數學教學課堂中應用問題導學法,就可以解決以往教學中存在的問題。通過問題的引入,促使學生可以全面認識問題在情境中的應用,并且在潛移默化中影響學生,指導學生對問題進行深層次的探索和分析,在問題研究和分析時,有助于提升學生的學習認知性,增加學生的知識印象,促使學生可以獲取成功的喜悅,以此調動學生學習的興趣,促使學生更好的參與到數學教W工作中[1]。

二、初中數學教學中問題導學法的應用方案分析

(一)針對性導入問題

問題導學法就是在教學工作中提出問題,這是展現出教學效果的重要教學方案,由此數學教師需要關注有關問題導學,確保問題的目標性,也可以對問題的提問分析現階段的數學教學問題,結合學生的認知能力和數學基礎知識提出相關問題,需要注意的是不能提出過于高深的問題,不然會讓學生失去學習的信心,難以獲取問題導學教學方案的質量。并且,教師設計的問題需要展現出教學內容的重難點,增加學習音響。如在學習“圖形平移”的過程中,教師的問題設計需要從基礎知識點出發(fā),詢問學生有關圖形平移理念和符合圖形平移的重要條件,進行啟發(fā)式的詢問,從而指導學生詢問和分析。在這一提問中,不但可以鞏固學生學習的基礎知識,還可以對理念和需求條件實施全面的分析和理解,促使學生掌控的知識更為牢固[2]。

(二)設計問題情境,指導學生思考

教師在應用問題導學的過程中,不能過于更多的提出問題,而是要結合整體教學內容設計一個問題情景,促使學生可以自主融入其中,激發(fā)學習的興趣,展現自身學習的自主性,與同班學生一起溝通和交流,設計和諧的學生、學生和教師、學生關系,促使學生對問題的分析始終懷有熱情和動力,從而更好的深入到問題分析中,有效提升教學工作的有效性。例如,在學習“基本平面圖形”的過程中,教師可以讓學生認識平面圖形的構建和對這些圖形的整體認識。而在實際教學中,教師可以依據多媒體實施平面圖形的圖片演示,促使學生可以對平面圖形有深刻的了解,促使學生對平面圖形進行分組介紹,提問其中存在的差異性,這樣設計的情境可以有效提升初中數學教學的質量和效率。

(三)設計問題情境

在正式上課之前,數學教師需要規(guī)定學生課前預習,保障學生對自身學習的知識有一定的了解。這樣不但可以保障上課過程中不會出現聽不懂等問題,還可以提升學生的自主學習能力。在設計問題的過程中,需要關注一下幾點問題:第一,提問一定要與數學課堂教學內容相符,只有提出具備目標性的問題才能保障教學的有效性,促使學生可以掌控所學的知識點。第二,提問有助于提升學生解決數學問題的能力。第三,所提問題一定要具備思維價值。第四,提問內容一定要保障準確性。第五,提問形式要多變,可以結合實際問題進行轉變。例如,在學習一元一次方程有關數學知識的過程中,教師可以結合步行時間和步行路程之間的關系,設計出相關的問題情境,在激發(fā)學生興趣的過程中,提出有關一元一次方程的有關內容。

三、問題導學法在初中數學教學中需要注意的內容

雖然應用問題導學可以有效提升初中數學的教學質量和效率,但不是所有的數學知識和教學方案都不能應用這種方案。由此可見,在實際應用過程中需要注意以下幾點問題:第一,設計有關問題的過程中,一定要管理好問題的數量。提問過少難以展現出問題導學的優(yōu)勢,提問的過多也會讓學生產生厭煩的心理。由此,應用問題導學的過程中一定要注重適度性。第三,在設計相關問題的過程中,一定要控制好循序漸進的過程。在設計問題時,初中數學教師一定要注重由淺入深,預防提問過程中出現參差不齊的問題。第四,在設計問題導學法的過程中,數學教師一定要堅持避免出現以往教學方案出現問題,預防教師再一次陷入到傳統(tǒng)教學問題中[3]。

結束語

總而言之,在初中數學教學中應用問題導學方案,不但可以調節(jié)初中生的學習積極性和自主性,保障學生可以參與到實際數學學習中,深入落實“以生為本”的原則,還可以靈活調節(jié)數學課堂環(huán)境,以此提升數學課堂教學質量和效率。初中數學教師在應用問題導學方案的過程中,可以結合問題導學的特點來設計優(yōu)質的教學方案和教學重難點,只有將問題導學方法與教學素材相符的教學方案相結合,才能獲取更好的教學效率,以此提升學生的數學成績。

參考文獻:

[1]呂德權. 問題導學法在初中數學教學中的應用[J]. 學周刊,2017,(04):29-30.

篇8

關鍵詞:初中數學;模型思想;教學模式

自21世紀初我國實行課改以來,在全國各地就興起了許多新的教學模式,與傳統(tǒng)教學方式相比,這些新的教學方式都非常注重理論與實踐的結合,在教學過程中注重對“模型思想”的滲透,而“數學模型”滲透是指:通過對問題的分析、歸納等過程,應用數學方法確定數量關系和變化規(guī)律,然后在此基礎上再建立起數學模型,然后利用相關方法、手段等求解數學模型,最后再對該模型進行驗證,在驗證的基礎上加以推廣,展示其應用的前景。這樣看來建立數學模型的過程就是解決問題的過程。

一、把握教學的本質

在教學中無論采用什么樣的教學模式,其根本出發(fā)點都是要從教材出發(fā),因此,當教師想要在初中數學教學課程上完成“模型思想”的滲透時,首先要做的就是仔細研讀教材內容,把課堂上所要講授的教學內容吃透,這樣才真正把握了教學本質,在教學設計的過程中才能將“數學模型”加入到每一步教學設計中來,讓課堂真正地高效起來,讓學生在學習的過程中感受到“模型思想”的魅力。

例如,筆者在教初中數學三年級上冊時,首先對教材內容進行了仔細的研讀與把握,這樣就能將教材內容上所涉及的“特殊的平行四邊形”“一元二次方程”“相似圖形”“投影與視圖”“反比例函數”“對概率的進一步研究”這六部分整體上進行理解與把握,這樣在進行“模型思想”滲透的過程中,就能從學生出發(fā),進行教學設計。

二、構建一定的模式

在對于教材內容有本質的把握以后,教師就可針對教學內容以及“模型思想”設計教學模式,這樣教師在教學過程中就有教學模式可遵循,從而使課程的可執(zhí)行度更大。另外,教師在遵循制定好的教學模式教學的過程中也要不斷學習,將所使用的教學模式逐步完善。

例如,筆者在教授初中數學二年級下冊“中心對稱圖形”時,筆者在課堂講授之前就給學生布置了以下問題,讓學生去思考:

(1)什么叫做中心對稱圖形?

(2)生活中有哪些常見的中心對稱圖形?

(3)這些中心對稱圖形有何關系?

通過這些問題,學生對于本節(jié)課的課程內容就能有基本的把握,教師也將本節(jié)課知識的講授建立了具有層次的數學模型,而且在教師講授的過程也可以利用學生的回答來進行引導,利用以上所提的問題使課堂教授層層遞進,從而使學生的學習效率更為高效。

三、鼓勵學生創(chuàng)新

新課改以后,初中數學教學中,創(chuàng)新思維逐步受到重視。在教學中對學生創(chuàng)新能力的培養(yǎng)能夠逐步提升學生解決實際問題的能力。初中數學知識決定問題的解法不止一種,而教師在分析例題時,往往只教給學生傳統(tǒng)的解題思路,把所遇到的題目按題型分類。但是這種做法往往只依靠記憶解決問題,這種所謂的“模型思想“的運用是不適合學生發(fā)展的。

例如,筆者在教授“一元二次方程”時有一個關于方程的問題:雞兔同籠問題。這一類問題的解決更多側重用方程的思想解決。但是在給學生進行思想創(chuàng)新的灌輸以后,學生就會產生新的想法,現筆者以教學案例說明:

題目:已知雞和兔共有15只,共有40只腳,問雞和兔各幾只?

經過創(chuàng)新性的培養(yǎng)學生新解法:

假設雞和兔訓練有素,咱們吹一聲哨,它們就會抬起一只腳,(40-15=25),再吹一聲哨的話,它們就又會抬起一只腳,(25-15=10),這個時候雞就一屁股坐地上,而兔子還兩只腳站著。所以,兔子有10/2=5只腳,雞有15-5=10只腳。

這一解法就結合了生活經驗與數學思維,利用“生活模型”解決數學問題。這種解法對于學生創(chuàng)新思維的培育是有利的。這對于高校課堂的構建也是重要的。

四、科學的評價標準

評價“模型思想”滲透的效果需要建立一定的評價標準。在初中數學的授課過程中這一標準的建立必須從學生出發(fā),建立適當的標準。這一標準的建立一方面要考慮“模型思想”在教學過程中的執(zhí)行度,另一方面要考慮學生在學習過程中的學習效果。良好科學的評價標準對于教學與學生的發(fā)展都是有利的,教師在教學設計的過程中必須要通過不斷摸索制定出真正適合自身課堂的教學評價標準。

在初中數學課堂教學中對于“模型思想”的滲透絕不是一蹴而就的事情,這需要教師結合課改的需要,考慮學生的主體性,從教學的本質出發(fā),結合“模型思想”的特點構建一定的教學模式,對于學生的表現建立科學的評價標準,這樣對于學生的發(fā)展與數學高效課堂的構建才是大有益處的。

參考文獻:

篇9

《義務教育數學課程標準(2011年版)》[1]對義務教育階段數學教育各方面提出諸多新要求,如何在新課標的指導下推進數學課程的發(fā)展是很多學者和一線教師關注的熱點。教學策略是教學實施的重要環(huán)節(jié)[2],有關教學策略的研究也是新課標下課程研究的熱點之一。本文以眉山冠城七中初中二年級九班(實驗班)和十班(對照版)的數學教學為例,在教材、教學進度及教學時間等條件一致的情況下通過對兩個班實施不同的教學策略,探討分析教學策略的效果。

2教學策略的具體實施及案例

2.1滲透數學思想的教學策略

《義務教育數學課程標準(2011年版)》指出,數學思想蘊涵在數學知識形成、發(fā)展和應用的過程中,是數學知識和方法在更高層次上的抽象與概括。數學的思想方法主要包括劃歸、數形結合、分類討論、符號與變元[3]及類比[4]等思想方法。數學的根源和本質并不在于結論,而是在于思想。數學課程的目的不單純是讓學生學到一些結論,更重要的是帶給學生數學思想,培養(yǎng)數學思維。研究思路:根據初中數學教材,探討數學思想方法在實際教學中的價值。設計一個在數學課堂教學中滲透數學思想方法的案例。以分式的計算教學設計(滲透類比思想方法)為例,首先提問學生分數的概念,通過對小學分數的概念的復習導入,使學生加深分數的印象,為后面與分式的類比作鋪墊。然后請學生思考課件上的問題并寫出答案(問題要有分數和分式兩種形式)。再讓學生分析分數與分式的異同點,得出分數的分子和分母與分式的分母的差異,于是得到分式的定義。通過問題思考可知,要使一個分式乘法具有整數意義,這個分式中的一個整數分母不能為0(與分數作類比得出)。教師提出問題:同學們,大家能根據分數的性質類比得到分式的性質嗎?面對分式的約分,通常需要約去分式中的每個分子和其分母的全部的公因式,讓得出的結果變成最簡的分式和整式。通過平時對實驗班和對照班的學生學習表現和學生的發(fā)言積極程度的觀察,可知實驗班的學生表現更為積極??梢钥闯鰯祵W思想方法的滲透對數學課堂有積極影響。

2.2融入數學文化的教學策略

《義務教育數學課程標準(2011年版)》中將“數學文化”有關實質記錄在課程標準的關鍵位置,且重點標記。在《義務教育數學課程標準(2011年版)》中提出“數學是人類文化的重要組成部分”。近來,關于數學文化融入數學教學的研究工作很多[5,6,7]。文獻[5]指出:“要保障學生掌握數學知識過程中能夠受到文化熏陶,感受到數學文化,實現社會文化與數學文化的互動。”數學文化融入數學教學是其中非常重要的教學策略。研究思路是根據初中數學教材,深究數學文化在數學教學中的價值體現,設計了一個將數學文化融入課堂教學中的教學案例。以勾股定理的教學設計(運用趣味故事進行引入)為例。據說在2500年前,畢達哥斯拉有一次去友人家拜訪,注意到他的友人家里是利用瓷磚徑直組合成的一整面的墻,在地面上它可以真實反映直角三角形三角多邊體的某些數量之間的相互關系,仔細地觀察下面的這些圖形,看是否能夠從中找到哪些圖形??梢园l(fā)現,以等腰直角三角形兩直角邊為邊長的小正方形的面積的和等于以斜邊為邊長的大正方形的面積。即等腰三角形的三邊之間有一種特殊的關系,即斜邊的平方等于兩直角邊的平方和。用另一個小故事引入勾股定理的證明。1876年一個周末的傍晚,在美國的郊區(qū),伽菲爾德在山區(qū)散步,發(fā)現在院子的石頭凳子上坐著兩個孩子,正專心致志地探討問題。伽菲爾德感到好奇,準備過去一探究竟。他注意到其中一個孩子猛地低下頭,手中握著樹枝在地上畫畫。伽菲爾德則問孩子為何爭論,畫畫的孩子頭也沒抬說道:“請問先生,假設一直角三角形的兩直角邊分別為3與4,那么斜邊長是多少呢?”伽菲爾德答道:“那肯定是5啊?!碑嫯嫷暮⒆佑窒蛩釂枺骸澳羌僭O兩條直角邊長各為5與7,那這次的斜邊長是多少呢?”伽菲爾德哈哈大笑想也沒想地答道:“這個斜邊的平方等于5的平方加7的平方。”畫畫的孩子見此又問他:“那您能不能講出為什么呢,是什么道理?”伽菲爾德馬上啞口無言,沒法回答他的問題了,心里有一種說不出的感覺。于是,伽菲爾德馬上就返回家里,潛心地探索這個男孩帶來的難題。通過反復地思考和演算,終于弄清楚了其中的原理,并且給出一種簡單的證明方法。通過觀察實驗班和對照班上課時同學的反應可知,在數學教學中融入數學文化,可以激發(fā)學生的學習興趣,使學生不再覺得數學是枯燥無味的,同時還可以提高學生的積極性以及頭腦的發(fā)散思維。

2.3信息技術輔助教學策略

信息技術輔助教學在教育教學中具有很大的優(yōu)勢,科學技術的應用極大地增加了教學的效率,但是當信息技術應用于教學時,教師自身也需要掌握課件制作。一直以來,關于信息技術應用于教學實踐的研究很多,其中不乏信息技術合理運用的研究[8]。顯然,盡管信息技術給教學帶來很大的便利,但應該結合課堂內容有選擇性地使用。多媒體的使用可以為學生的學習發(fā)展創(chuàng)造更廣闊的空間。研究思路是根據初中數學教材,探究信息技術在實際教學中的價值體現。設計一個在課堂教學中運用信息技術輔助教學的案例。以軸對稱圖形的教學設計為例。先拿出一張小小的手工畫板紙,對折后再繪出“心”形的一半。如果老師把這張簡單的手工模型畫放在紙兩邊對折一下,沿著這條對折線的邊緣裁剪一個新的圖形,是否能通過推測計算得出用老師的邊剪的這個圖形到底是什么?(本課教師通過演示,學生剪出了這個空心圖形并將它重新展開),原來這圖形是一個“心”形。我非常期待在咱們班里每位老師同學都能擁有一顆真摯的愛心。仔細地一起觀察一下,這個白色心形的左右兩邊是怎樣的圖形。由此引入對稱。教師利用多媒體動畫使上面的圖形對折后發(fā)現是重合的。通過課下對實驗班和對照班的同學進行抽樣訪談,實驗班的同學通過動畫的形式,能更好地理解對稱圖形對應的點,而對照班的同學大都覺得只靠頭腦去想太抽象了。通過對信息技術輔助教學的研究,可知信息技術能激發(fā)學生的學習興趣。不少學生感到數學課堂枯燥無味,活潑有趣的數字動畫視覺效果和生動直觀的多媒體彩色影像,以其趣味性來引發(fā)學生的思考,能夠促使學生保持興奮的狀態(tài)進行積極地思考,學生在這樣的情境中更加樂于學習。幫助學生深入理解數學,利用信息技術讓學生深入了解中位線定理以及圓面積公式的來歷,提高教學效率。在概率統(tǒng)計以及蒲豐投針實驗時,利用信息技術進行模擬實驗,節(jié)省板書時間,學生深切體會數學方法的神奇,幫助學生解題。在數形結合解題過程中,往往手工作圖不夠準確,而利用信息技術作圖,能幫助解題,并聯系與生活密切相關的大自然。不少中學生都認為數學就是在搞一些理論,與實際聯系不多,甚至覺得用處不大。其實不然,例如在生活中,圓的知識可以聯系生活中的車輪是圓的,而不是方的等。

3總結與建議

通過對教學策略的研究和實驗班與對照班的結果對比,得到如下結論。數學思想方法的滲透要走好課前、課中和課后這關鍵的三步。(1)課前,教師應深刻理解教育教學過程中常用的數學思想方法,深刻理解并掌握其應用原理,明確其培養(yǎng)目標。在備課確定教學目標時,明確各個教學環(huán)節(jié)使用的數學思想方法,并備注教授方法。(2)課中,在教授新知識形成的過程中,教師要有意識地將自己對數學思想方法的理解用充滿感情、富有藝術性且言簡意賅地講述。對于需要經過分析與整理、歸納與演繹的較難掌握的數學思維和方法,教師不僅要口頭講述,還要進行科學的示范指導。在鞏固新知解決問題的過程中,教師要有目的、有計劃、有組織地引導學生將數學思想方法在理解的基礎上運用練習,從而起到強化作用。在總結的過程中,讓學生做總結性發(fā)言。(3)課后,教師應布置本堂課所學數學思想方法相對應的數學問題,作為課后練習。在上課初始引導學生回顧上節(jié)課所學思想方法。開設與數學思想方法相關的數學選修課,讓感興趣的學生參加。數學文化融入數學教學需要教師注重數學文化方面的學習和資料積累,進一步通過課程的講解,把數學生動自然地呈現給學生。達到使學生通過部分數學史料的學習,感受數學之美,增強學生的數學學習興趣?,F代教育技術的運用要合理、高效。正確把握現代教育技術運用到某些內容的教育實踐中的優(yōu)缺點。要清楚運用這種信息技術的目標和意義就是為了能夠更好地解決數學課堂上的困惑和難點,有利于幫助學生獨立思考,并非用它來代替以往行之有效的數學課堂教學模式,更不能讓他處處替代學生自己應有的數學知識和思維能力。

參考文獻:

〔1〕中華人民共和國教育部.全日制義務教育數學課程標準(2011年版)[S].北京:北京師范大學出版社,2012.

〔2〕張靜.根據認知風格差異改進初中數學教學策略研究[D].上海:上海師范大學,2007.

〔3〕張力瓊.初中數學教學中滲透數學思想方法的教學策略研究[D].蘭州:西北師范大學,2007.

〔4〕王玉章.初中數學類比思想方法的探究與應用[D].上海:上海師范大學,2016.

〔5〕課程教材研究所,中學數學課程教材研究開發(fā)中心.義務教育教科書,數學七年級上冊一九年級下冊[M].北京:人民教育出版社,2013.

〔6〕陳家寧.數學文化融入初中數學教學實踐及課例分析[D].桂林:廣西師范大學,2017.

〔7〕耿秀芳.初中數學教學中融入數學文化的教學策略研究[D].呼和浩特:內蒙古師范大學,2016.

篇10

隨著國內外教育技術的發(fā)展,多媒體輔助教學在各學科的教育領域已被廣泛地應用。由于數學學科自身的特點,傳統(tǒng)的數學教學方式抽象枯燥。當多媒體走進中學數學教學后,具有很強的真實感,充分創(chuàng)造出一個圖文并茂、有聲有色、生動逼真的教學環(huán)境,更好地激發(fā)了學生的學習熱情,從而優(yōu)化了中學數學教學。

二、利用多媒體技術優(yōu)化中學數學教學的研究原則

1.科學性原則

所謂科學性原則,就是指整合要反映多媒體技術與初中數學課程的客觀聯系,符合教育教學規(guī)律。要有正確的教育理論做指導,要考慮到學生的個別差異,要考慮到數學學科的特點和信息技術的特點及其相互聯系。使用信息技術的硬軟件,必須注意到數學課堂教學的組織形式,需要科學地服務于教材內容。

2.發(fā)展性原則

以學生的全面發(fā)展為著眼點,這是進行科學教育、人性化教育的最基本的原則,在課題研究中,要充分發(fā)揮學生在學習過程中的主動性、積極性,使他們得到可持續(xù)發(fā)展。

3.整體性原則

所謂整體性原則,是指必須將多媒體技術與數學課程按相互間的內在聯系組成一個統(tǒng)一的整體,充分發(fā)揮課程整合的整體功能。

4.有效性原則

所謂有效性原則,就是指多媒體技術與數學課程整合既要講究效率,又要追求效益。效率是速度問題。對教師來講,要在規(guī)定時間內以較少的精力達到當時條件下盡可能大的效果。對學生來講,利用網絡資源,可以使學生多種感官并用,加快了知識的理解和記憶。

三、研究內容

1.巧用多媒體,激情引趣

愛因斯坦說過:“興趣是最好的老師?!比欢d趣不是天生就有的,是通過外界的新穎性、獨特性來滿足學生探究心理而引起的。巧妙地利用聲音、圖像、文字、錄像、動畫創(chuàng)設教學情景,能積極調動學生多種感官參與,激發(fā)學生去探求、去發(fā)現、去創(chuàng)造的欲望。

2.巧用多媒體,突破重、難點

在中學數學教學中,概念、法則等既是重點又是難點。這些知識具有一定的抽象性,給學生形成認知結構造成困難。多媒體技術有圖、文、音、像并茂的特點,能生動、形象地展示實物形象,突出感知的重點,突破感知的難點。

3.巧用多媒體,提高操作能力

利用計算機模擬操作比教師用其他手段演示更形象、逼真,把它與學生實際操作相結合,幫助學生正確掌握操作方法,形成操作技能,可收到事半功倍的效果。

四、研究方法

1.問卷調查法

通過對學生和數學教師進行問卷調查的方式,了解教師在多媒體教學手段的應用方面所作的嘗試和取得的成效,為下一步的課題研究提供現實依據。

2.行動研究法

通過自己的親身實踐和嘗試,探索如何通過多媒體教學手段在初中數學教學中的合理運用,進一步實現課堂教學過程和結構的整體優(yōu)化。

3.經驗總結法

根據各階段的實踐經驗,總結出科學、合理的運用多媒體教學手段提高學生學習興趣、促進學生能力發(fā)展的切實有效的措施和方法,希望能提升自己,為廣大教師提供指導和借鑒。

五、研究步驟及組內人員分工

準備階段:2012年12月至2013年2月,教學反思,查找資料,課題形成,申報課題立項,制定研究方案,做好評審書的撰寫,做好課題開題工作。

實施階段:2013年3月至2013年6月,通過教學實踐及聽課學習的方式獲得教學案例并進行比較分析,同時通過與其他數學教師和學生的交流得到可行的意見和建議。

推進階段:2013年7月至2013年10月,也就是課題研究的階段性成果小結階段,根據實踐和反饋的具體實情,做好研究資料的階段性整理和分析,動態(tài)地繼續(xù)推進課題研究進程。

課題研究的總結和結題工作:2013年11月至2013年12月,做好研究資料的整理和分析,認真撰寫研究報告,申請課題結題鑒定。并做好成果的推介工作。

沈群英:制定研究方案,全面負責課題研究工作;

徐燕紅:觀測記錄案例,撰寫研究論文;

王華:檔案整理、典型案例分析,為科研論文準備第一手資料。

六、課題研究的預期成果形式

1.課題研究報告、論文集、優(yōu)秀教案集。

2.優(yōu)秀課堂教學整合實驗課實錄、課件集、課題研究的音像制品。

3.完善學科資源網站。

參考文獻:

1.陳至立.抓住機遇,加快發(fā)展,在中小學大力普及信息技術教育,2000.10.