生物信息學(xué)進(jìn)展研究論文

時間:2022-10-29 11:10:00

導(dǎo)語:生物信息學(xué)進(jìn)展研究論文一文來源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

生物信息學(xué)進(jìn)展研究論文

[論文關(guān)鍵詞]生物信息學(xué)生命科學(xué)

[論文摘要]生物信息學(xué)是80年代以來新興的一門邊緣學(xué)科,信息在其中具有廣闊的前景。伴隨著人類基因組計劃的勝利完成與生物信息學(xué)的發(fā)展有著密不可分的聯(lián)系,生物信息學(xué)的發(fā)展為生命科學(xué)的發(fā)展為生命科學(xué)的研究帶來了諸多的便利,對此作了簡單的分析。

一、生物信息學(xué)的產(chǎn)生

21世紀(jì)是生命科學(xué)的世紀(jì),伴隨著人類基因組計劃的勝利完成,與此同時,諸如大腸桿菌、結(jié)核桿菌、啤酒酵母、線蟲、果蠅、小鼠、擬南芥、水稻、玉米等等其它一些模式生物的基因組計劃也都相繼完成或正在順利進(jìn)行。人類基因組以及其它模式生物基因組計劃的全面實施,使分子生物數(shù)據(jù)以爆炸性速度增長。在計算機(jī)科學(xué)領(lǐng)域,按照摩爾定律飛速前進(jìn)的計算機(jī)硬件,以及逐步受到各國政府重視的信息高速公路計劃的實施,為生物信息資源的研究和應(yīng)用帶來了福音。及時、充分、有效地利用網(wǎng)絡(luò)上不斷增長的生物信息數(shù)據(jù)庫資源,已經(jīng)成為生命科學(xué)和生物技術(shù)研究開發(fā)的必要手段,從而誕生了生物信息學(xué)。

二、生物信息學(xué)研究內(nèi)容

(一)序列比對

比較兩個或兩個以上符號序列的相似性或不相似性。序列比對是生物信息學(xué)的基礎(chǔ)。兩個序列的比對現(xiàn)在已有較成熟的動態(tài)規(guī)劃算法,以及在此基礎(chǔ)上編寫的比對軟件包BALST和FASTA,可以免費(fèi)下載使用。這些軟件在數(shù)據(jù)庫查詢和搜索中有重要的應(yīng)用。有時兩個序列總體并不很相似,但某些局部片斷相似性很高。Smith-Waterman算法是解決局部比對的好算法,缺點(diǎn)是速度較慢。兩個以上序列的多重序列比對目前還缺乏快速而又十分有效的算法。

(二)結(jié)構(gòu)比對

比較兩個或兩個以上蛋白質(zhì)分子空間結(jié)構(gòu)的相似性或不相似性。

(三)蛋白質(zhì)結(jié)構(gòu)預(yù)測

從方法上來看有演繹法和歸納法兩種途徑。前者主要是從一些基本原理或假設(shè)出發(fā)來預(yù)測和研究蛋白質(zhì)的結(jié)構(gòu)和折疊過程。分子力學(xué)和分子動力學(xué)屬這一范疇。后者主要是從觀察和總結(jié)已知結(jié)構(gòu)的蛋白質(zhì)結(jié)構(gòu)規(guī)律出發(fā)來預(yù)測未知蛋白質(zhì)的結(jié)構(gòu)。同源模建和指認(rèn)(Threading)方法屬于這一范疇。雖然經(jīng)過30余年的努力,蛋白結(jié)構(gòu)預(yù)測研究現(xiàn)狀遠(yuǎn)遠(yuǎn)不能滿足實際需要。

(四)計算機(jī)輔助基因識別

給定基因組序列后,正確識別基因的范圍和在基因組序列中的精確位置.這是最重要的課題之一,而且越來越重要。經(jīng)過20余年的努力,提出了數(shù)十種算法,有十種左右重要的算法和相應(yīng)軟件上網(wǎng)提供免費(fèi)服務(wù)。原核生物計算機(jī)輔助基因識別相對容易些,結(jié)果好一些。從具有較多內(nèi)含子的真核生物基因組序列中正確識別出起始密碼子、剪切位點(diǎn)和終止密碼子,是個相當(dāng)困難的問題,研究現(xiàn)狀不能令人滿意,仍有大量的工作要做。

(五)非編碼區(qū)分析和DNA語言研究

在人類基因組中,編碼部分進(jìn)展總序列的3-5%,其它通常稱為“垃圾”DNA,其實一點(diǎn)也不是垃圾,只是我們暫時還不知道其重要的功能。分析非編碼區(qū)DNA序列需要大膽的想象和嶄新的研究思路和方法。DNA序列作為一種遺傳語言,不僅體現(xiàn)在編碼序列之中,而且隱含在非編碼序列之中。

三、生物信息學(xué)的新技術(shù)

(一)Lipshutz(Affymetrix,Santaclara,CA,USA)

描述了一種利用DNA探針陣列進(jìn)行基因組研究的方法,其原理是通過更有效有作圖、表達(dá)檢測和多態(tài)性篩選方法,可以實現(xiàn)對人類基因組的測序。光介導(dǎo)的化學(xué)合成法被應(yīng)用于制造小型化的高密度寡核苷酸探針的陣列,這種通過軟件包件設(shè)計的寡核苷酸探針陣列可用于多態(tài)性篩查、基因分型和表達(dá)檢測。然后這些陣列就可以直接用于并行DNA雜交分析,以獲得序列、表達(dá)和基因分型信息。Milosavljevic(CuraGen,Branford,CT,USA)介紹了一種新的基于專用定量表達(dá)分析方法的基因表達(dá)檢測系統(tǒng),以及一種發(fā)現(xiàn)基因的系統(tǒng)GeneScape。為了有效地抽樣表達(dá),特意制作片段模式以了解特定基因的子序列的發(fā)生和冗余程度。他在酵母差異基因表達(dá)的大規(guī)模研究中對該技術(shù)的性能進(jìn)行了驗證,并論述了技術(shù)在基因的表達(dá)、生物學(xué)功能以及疾病的基礎(chǔ)研究中的應(yīng)用。(二)基因的功能分析

Overton(UniversityofPennsylvaniaSchoolofMedicine,Philadelphia,PA,USA)論述了人類基因組計劃的下一階段的任務(wù)基因組水平的基因功能分析。這一階段產(chǎn)生的數(shù)據(jù)的分析、管理和可視性將毫無疑問地比第一階段更為復(fù)雜。他介紹了一種用于脊椎動物造血系統(tǒng)紅系發(fā)生的功能分析的原型系統(tǒng)E-poDB,它包括了用于集成數(shù)據(jù)資源的Kleisli系統(tǒng)和建立internet或intranet上視覺化工具的bioWidget圖形用戶界面。EpoDB有可能指導(dǎo)實驗人員發(fā)現(xiàn)不可能用傳統(tǒng)實驗方法得到的紅系發(fā)育的新的藥物靶,制藥業(yè)所感興趣的是全新的藥物靶,EpoDB提供了這樣一個機(jī)會,這可能是它最令人激動的地方。

Babbitt(UniversityofCalifornia,SanFrancisco,CA,USA)討論了通過數(shù)據(jù)庫搜索來識別遠(yuǎn)緣蛋白質(zhì)的方法。對蛋白質(zhì)超家族的結(jié)構(gòu)和功能的相互依賴性的理解,要求了解自然所塑造的一個特定結(jié)構(gòu)模板的隱含限制。蛋白質(zhì)結(jié)構(gòu)之間的最有趣的關(guān)系經(jīng)常在分歧的序列中得以表現(xiàn),因而區(qū)分得分低(low-scoring)但生物學(xué)關(guān)系顯著的序列與得分高而生物學(xué)關(guān)系較不顯著的序列是重要的。Babbit證明了通過使用BLAST檢索,可以在數(shù)據(jù)庫搜索所得的低得分區(qū)識別遠(yuǎn)緣關(guān)系(distantrelationship)。Levitt(Stanforduniveersity,PaloAlto,CA,USA)討論了蛋白質(zhì)結(jié)構(gòu)預(yù)測和一種僅從序列數(shù)據(jù)對功能自動模建的方法。基因功能取決于基因編碼的蛋白質(zhì)的三級結(jié)構(gòu),但數(shù)據(jù)庫中蛋白質(zhì)序列的數(shù)目每18個月翻一番。為了確定這些序列的功能,結(jié)構(gòu)必須確定。同源模建和從頭折疊(abinitiofolding)方法是兩種現(xiàn)有的互為補(bǔ)充的蛋白質(zhì)結(jié)構(gòu)預(yù)測方法;同源模建是通過片段匹配(segmentmatching)來完成的,計算機(jī)程棄SegMod就是基于同源模建方法的。

(三)新的數(shù)據(jù)工具

Letovsky(JohnshopkinsUniversity,Baltimore,MD,USA)介紹了GDB數(shù)據(jù)庫,它由每條人類染色體的許多不同圖譜組成,包括細(xì)胞遺傳學(xué)、遺傳學(xué)、放射雜交和序列標(biāo)簽位點(diǎn)(STS)的內(nèi)容,以及由不同研究者用同種方法得到的圖譜。就位置查詢而言,如果不論其類型(type)和來源(source),或者是否它們正好包含用以批定感興趣的區(qū)域的標(biāo)志(markers),能夠搜索所有圖譜是有用的。為此目的,該數(shù)據(jù)庫使用了一種公用坐標(biāo)系統(tǒng)(commoncoordinatesystem)來排列這些圖譜。數(shù)據(jù)庫還提供了一張高分辨率的和與其他圖譜共享許多標(biāo)志的圖譜作為標(biāo)準(zhǔn)。共享標(biāo)志的標(biāo)之間的對應(yīng)性容許同等于所有其它圖譜的標(biāo)準(zhǔn)圖譜的分配。

Candlin(PEappliedBiosystems,FosterCity,CA,USA)介紹了一種新的存儲直接來自ABⅠPrismdNA測序儀的數(shù)據(jù)的關(guān)系數(shù)據(jù)庫系統(tǒng)BioLIMS。該系統(tǒng)可以與其它測序儀的數(shù)據(jù)集成,并可方便地與其它軟件包自動調(diào)用,為測序儀與序列數(shù)據(jù)的集成提供了一種開放的、可擴(kuò)展的生物信息學(xué)平臺。

參考文獻(xiàn):

[1]LimHA,BatttR.TIBTECH,1998;16(3)):104.

[2]Williamsn.Science,1997;277(5328):902.