等差數(shù)列通項公式教案

時間:2022-03-09 09:29:00

導語:等差數(shù)列通項公式教案一文來源于網(wǎng)友上傳,不代表本站觀點,若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

等差數(shù)列通項公式教案

教學目標

1.明確等差數(shù)列的定義.

2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

3.培養(yǎng)學生觀察、歸納能力.

教學重點

1.等差數(shù)列的概念;

2.等差數(shù)列的通項公式

教學難點

等差數(shù)列“等差”特點的理解、把握和應(yīng)用

教學方法

啟發(fā)式數(shù)學

教具準備

投影片1張(內(nèi)容見下面)

教學過程

(I)復習回顧

師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數(shù)列共同特點。

對于數(shù)列①(1≤n≤6);(2≤n≤6)

對于數(shù)列②-2n(n≥1)

(n≥2)

對于數(shù)列③(n≥1)

(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2,。

二、等差數(shù)列的通項公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項

(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結(jié)

師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項公式(n≥1)

推導出公式:(V)課后作業(yè)

一、課本P118習題3.21,2

二、1.預習內(nèi)容:課本P116例2—P117例4

2.預習提綱:①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

②等差數(shù)列有哪些性質(zhì)?

板書設(shè)計

課題

一、定義

1.(n≥2)

一、通項公式

2.公式推導過程例題

教學后記