哥德巴赫猜想教案

時(shí)間:2022-02-18 03:35:00

導(dǎo)語(yǔ):哥德巴赫猜想教案一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

哥德巴赫猜想教案

世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國(guó)一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國(guó)彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)不小于6的偶數(shù)都是兩個(gè)素?cái)?shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。

公元1742年6月7日哥德巴赫(Goldbach)寫(xiě)信給當(dāng)時(shí)的大數(shù)學(xué)家歐拉(Euler),提出了以下的想法:

(a)任何一個(gè)>=6之偶數(shù),都可以表示成兩個(gè)奇質(zhì)數(shù)之和。

(b)任何一個(gè)>=9之奇數(shù),都可以表示成三個(gè)奇質(zhì)數(shù)之和。

這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說(shuō),他相信這個(gè)猜想是正確的,但他不能證明。敘述如此簡(jiǎn)單的問(wèn)題,連歐拉這樣首屈一指的數(shù)學(xué)家都不能證明,這個(gè)猜想便引起了許多數(shù)學(xué)家的注意。從費(fèi)馬提出這個(gè)猜想至今,許多數(shù)學(xué)家都不斷努力想攻克它,但都沒(méi)有成功。當(dāng)然曾經(jīng)有人作了些具體的驗(yàn)證工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,....等等。有人對(duì)33×108以內(nèi)且大過(guò)6之偶數(shù)一一進(jìn)行驗(yàn)算,哥德巴赫猜想(a)都成立。但驗(yàn)格的數(shù)學(xué)證明尚待數(shù)學(xué)家的努力。

從此,這道著名的數(shù)學(xué)難題引起了世界上成千上萬(wàn)數(shù)學(xué)家的注意。200年過(guò)去了,沒(méi)有人證明它。哥德巴赫猜想由此成為數(shù)學(xué)皇冠上一顆可望不可及的“明珠”。到了20世紀(jì)20年代,才有人開(kāi)始向它靠近。1920年、挪威數(shù)學(xué)家布爵用一種古老的篩選法證明,得出了一個(gè)結(jié)論:每一個(gè)比大的偶數(shù)都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學(xué)家們于是從(9十9)開(kāi)始,逐步減少每個(gè)數(shù)里所含質(zhì)數(shù)因子的個(gè)數(shù),直到最后使每個(gè)數(shù)里都是一個(gè)質(zhì)數(shù)為止,這樣就證明了“哥德巴赫”。

目前最佳的結(jié)果是中國(guó)數(shù)學(xué)家陳景潤(rùn)於1966年證明的,稱為陳氏定理(Chen‘sTheorem)“任何充份大的偶數(shù)都是一個(gè)質(zhì)數(shù)與一個(gè)自然數(shù)之和,而後者僅僅是兩個(gè)質(zhì)數(shù)的乘積?!蓖ǔ6己?jiǎn)稱這個(gè)結(jié)果為大偶數(shù)可表示為“1+2”的形式。

1920年,挪威的布朗(Brun)證明了“9+9”。

1924年,德國(guó)的拉特馬赫(Rademacher)證明了“7+7”。

1932年,英國(guó)的埃斯特曼(Estermann)證明了“6+6”。

1937年,意大利的蕾西(Ricei)先後證明了“5+7”,“4+9”,“3+15”和“2+366”。1938年,蘇聯(lián)的布赫夕太勃(Byxwrao)證明了“5+5”。

1940年,蘇聯(lián)的布赫夕太勃(Byxwrao)證明了“4+4”。

1948年,匈牙利的瑞尼(Renyi)證明了“1+c”,其中c是一很大的自然數(shù)。

1956年,中國(guó)的王元證明了“3+4”。

1957年,中國(guó)的王元先後證明了“3+3”和“2+3”。

1962年,中國(guó)的潘承洞和蘇聯(lián)的巴爾巴恩(BapoaH)證明了“1+5”,中國(guó)的王元證明了“1+4”。

1965年,蘇聯(lián)的布赫夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)證明了“1+3”。

1966年,中國(guó)的陳景潤(rùn)證明了“1+2”。

最終會(huì)由誰(shuí)攻克“1+1”這個(gè)難題呢?現(xiàn)在還沒(méi)法預(yù)測(cè)。