天天精品资源在线观看,亚洲精品在线影院,女性私人爽爽影院免费观看国产,亚洲中文字幕aⅴ天堂自拍

  • Fractals-complex Geometry Patterns And Scaling In Nature And Society
    • 數(shù)據(jù)庫收錄SCIE
    • 創(chuàng)刊年份1993年
    • 年發(fā)文量327
    • H-index36

    Fractals-complex Geometry Patterns And Scaling In Nature And Society

    期刊中文名:自然與社會中的分形復雜幾何模式和尺度ISSN:0218-348XE-ISSN:1793-6543

    該雜志國際簡稱:FRACTALS,是由出版商World Scientific Publishing Co. Pte Ltd出版的一本致力于發(fā)布數(shù)學研究新成果的的專業(yè)學術期刊。該雜志以MULTIDISCIPLINARY SCIENCES研究為重點,主要發(fā)表刊登有創(chuàng)見的學術論文文章、行業(yè)最新科研成果,扼要報道階段性研究成果和重要研究工作的最新進展,選載對學科發(fā)展起指導作用的綜述與專論,促進學術發(fā)展,為廣大讀者服務。該刊是一本國際優(yōu)秀雜志,在國際上有很高的學術影響力。

    基本信息:
    期刊簡稱:FRACTALS
    是否OA:未開放
    是否預警:
    Gold OA文章占比:39.15%
    出版信息:
    出版地區(qū):SINGAPORE
    出版周期:Quarterly
    出版語言:English
    出版商:World Scientific Publishing Co. Pte Ltd
    評價信息:
    中科院分區(qū):3區(qū)
    JCR分區(qū):Q1
    影響因子:3.3
    CiteScore:7.4
    雜志介紹 中科院JCR分區(qū) JCR分區(qū) CiteScore 投稿經(jīng)驗

    雜志介紹

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志介紹

    《Fractals-complex Geometry Patterns And Scaling In Nature And Society》是一本以English為主的未開放獲取國際優(yōu)秀期刊,中文名稱自然與社會中的分形復雜幾何模式和尺度,本刊主要出版、報道數(shù)學-MULTIDISCIPLINARY SCIENCES領域的研究動態(tài)以及在該領域取得的各方面的經(jīng)驗和科研成果,介紹該領域有關本專業(yè)的最新進展,探討行業(yè)發(fā)展的思路和方法,以促進學術信息交流,提高行業(yè)發(fā)展。該刊已被國際權威數(shù)據(jù)庫SCIE收錄,為該領域相關學科的發(fā)展起到了良好的推動作用,也得到了本專業(yè)人員的廣泛認可。該刊最新影響因子為3.3,最新CiteScore 指數(shù)為7.4。

    本刊近期中國學者發(fā)表的論文主要有:

    • A NOVEL COLLECTIVE ALGORITHM USING CUBIC UNIFORM SPLINE AND FINITE DIFFERENCE APPROACHES TO SOLVING FRACTIONAL DIFFUSION SINGULAR WAVE MODEL THROUGH DAMPING-REACTION FORCES

      Author: Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed

    • STUDY OF INTEGER AND FRACTIONAL ORDER COVID-19 MATHEMATICAL MODEL

      Author: Ouncharoen, Rujira; Shah, Kamal; Ud Din, Rahim; Abdeljawad, Thabet; Ahmadian, Ali; Salahshour, Soheil; Sitthiwirattham, Thanin

    • DYNAMICS IN A FRACTIONAL ORDER PREDATOR-PREY MODEL INVOLVING MICHAELIS-MENTEN-TYPE FUNCTIONAL RESPONSE AND BOTH UNEQUAL DELAYS

      Author: Li, Peiluan; Gao, Rong; Xu, Changjin; Lu, Yuejing; Shang, Youlin

    • NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH beta-FRACTIONAL DERIVATIVE

      Author: Wang, Kangle

    英文介紹

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志英文介紹

    The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

    Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

    The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

    中科院SCI分區(qū)

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志中科院分區(qū)信息

    2023年12月升級版
    綜述:
    TOP期刊:
    大類:數(shù)學 3區(qū)
    小類:

    MULTIDISCIPLINARY SCIENCES
    綜合性期刊 2區(qū)

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 3區(qū)

    2022年12月升級版
    綜述:
    TOP期刊:
    大類:數(shù)學 2區(qū)
    小類:

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 2區(qū)

    2021年12月舊的升級版
    綜述:
    TOP期刊:
    大類:數(shù)學 2區(qū)
    小類:

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 2區(qū)

    MULTIDISCIPLINARY SCIENCES
    綜合性期刊 3區(qū)

    2021年12月基礎版
    綜述:
    TOP期刊:
    大類:數(shù)學 1區(qū)
    小類:

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 2區(qū)

    MULTIDISCIPLINARY SCIENCES
    綜合性期刊 3區(qū)

    2021年12月升級版
    綜述:
    TOP期刊:
    大類:數(shù)學 2區(qū)
    小類:

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 2區(qū)

    MULTIDISCIPLINARY SCIENCES
    綜合性期刊 3區(qū)

    2020年12月舊的升級版
    綜述:
    TOP期刊:
    大類:數(shù)學 1區(qū)
    小類:

    MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    數(shù)學跨學科應用 1區(qū)

    MULTIDISCIPLINARY SCIENCES
    綜合性期刊 2區(qū)

    中科院SCI分區(qū):是中國科學院文獻情報中心科學計量中心的科學研究成果。期刊分區(qū)表自2004年開始發(fā)布,延續(xù)至今;2019年推出升級版,實現(xiàn)基礎版、升級版并存過渡,2022年只發(fā)布升級版,期刊分區(qū)表數(shù)據(jù)每年底發(fā)布。 中科院分區(qū)為4個區(qū)。中科院分區(qū)采用刊物前3年影響因子平均值進行分區(qū),即前5%為該類1區(qū),6%~20%為2區(qū)、21%~50%為3區(qū),其余的為4區(qū)。1區(qū)和2區(qū)雜志很少,雜志質量相對也高,基本都是本領域的頂級期刊。

    JCR分區(qū)(2023-2024年最新版)

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志 JCR分區(qū)信息

    按JIF指標學科分區(qū)
    學科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    收錄子集:SCIE
    分區(qū):Q1
    排名:19 / 135
    百分位:

    86.3%

    學科:MULTIDISCIPLINARY SCIENCES
    收錄子集:SCIE
    分區(qū):Q1
    排名:29 / 134
    百分位:

    78.7%

    按JCI指標學科分區(qū)
    學科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
    收錄子集:SCIE
    分區(qū):Q1
    排名:7 / 135
    百分位:

    95.19%

    學科:MULTIDISCIPLINARY SCIENCES
    收錄子集:SCIE
    分區(qū):Q1
    排名:18 / 135
    百分位:

    87.04%

    JCR分區(qū):JCR分區(qū)來自科睿唯安公司,JCR是一個獨特的多學科期刊評價工具,為唯一提供基于引文數(shù)據(jù)的統(tǒng)計信息的期刊評價資源。每年發(fā)布的JCR分區(qū),設置了254個具體學科。JCR分區(qū)根據(jù)每個學科分類按照期刊當年的影響因子高低將期刊平均分為4個區(qū),分別為Q1、Q2、Q3和Q4,各占25%。JCR分區(qū)中期刊的數(shù)量是均勻分為四個部分的。

    CiteScore 評價數(shù)據(jù)(2024年最新版)

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志CiteScore 評價數(shù)據(jù)

    • CiteScore 值:7.4
    • SJR:0.673
    • SNIP:0.913
    學科類別 分區(qū) 排名 百分位
    大類:Mathematics 小類:Geometry and Topology Q1 2 / 106

    98%

    大類:Mathematics 小類:Applied Mathematics Q1 39 / 635

    93%

    大類:Mathematics 小類:Modeling and Simulation Q1 29 / 324

    91%

    歷年影響因子和期刊自引率

    投稿經(jīng)驗

    Fractals-complex Geometry Patterns And Scaling In Nature And Society雜志投稿經(jīng)驗

    該雜志是一本國際優(yōu)秀雜志,在國際上有較高的學術影響力,行業(yè)關注度很高,已被國際權威數(shù)據(jù)庫SCIE收錄,該雜志在MULTIDISCIPLINARY SCIENCES綜合專業(yè)領域專業(yè)度認可很高,對稿件內容的創(chuàng)新性和學術性要求很高,作為一本國際優(yōu)秀雜志,一般投稿過審時間都較長,投稿過審時間平均 12周,或約稿 ,如果想投稿該刊要做好時間安排。版面費不祥。該雜志近兩年未被列入預警名單,建議您投稿。如您想了解更多投稿政策及投稿方案,請咨詢客服。

    免責聲明

    若用戶需要出版服務,請聯(lián)系出版商:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224。